Software

Model 5312B
Software Developer’s Guide vi.0

KEITHLEY

WARRANTY

Hardware

Keithley Instruments, Inc. warrants that, for a period of one (1) year from the date of shipment (3 years for Models 2GID2@0H 2010), the Keithley
Hardware product will be free from defects in materials or workmanship. This warranty will be honored provided the defebekascaused by use of the
Keithley Hardware not in accordance with the instructions for the product. This warranty shall be null and void upon: dti)fizayion of Keithley Hard-
ware that is made by other than Keithley and not approved in writing by Keithley or (2) operation of the Keithley Hardidarefdabesenvironmental speci-
fications therefore.

Upon receiving notification of a defect in the Keithley Hardware during the warranty period, Keithley will, at its optiomepéheor replace such Keithley
Hardware. During the first ninety days of the warranty period, Keithley will, at its option, supply the necessary on sitedabborthe product to the condi-
tion prior to the notification of a defect. Failure to notify Keithley of a defect during the warranty shall relieve Keittd@pbfiations and liabilities under
this warranty.

Other Hardware

The portion of the product that is not manufactured by Keithley (Other Hardware) shall not be covered by this warrantyjenshiédihave no duty of obli-
gation to enforce any manufacturers' warranties on behalf of the customer. On those other manufacturers’ products tipair&leétbdsyfor resale, Keithley
shall have no duty of obligation to enforce any manufacturers’ warranties on behalf of the customer.

Software

Keithley warrants that for a period of one (1) year from date of shipment, the Keithley produced portion of the softwavarer(feithley Software) will con-
form in all material respects with the published specifications provided such Keithley Software is used on the producitfe wtdokded and otherwise in
accordance with the instructions therefore. Keithley does not warrant that operation of the Keithley Software will heptednterror-free and/or that the
Keithley Software will be adequate for the customer's intended application and/or use. This warranty shall be null amdamjdnguification of the Keithley
Software that is made by other than Keithley and not approved in writing by Keithley.

If Keithley receives notification of a Keithley Software nonconformity that is covered by this warranty during the warradiyKeéhley will review the con-
ditions described in such notice. Such notice must state the published specification(s) to which the Keithley Softweoafaits @nd the manner in which
the Keithley Software fails to conform to such published specification(s) with sufficient specificity to permit Keithley tesaolreonconformity. If Keithley
determines that the Keithley Software does not conform with the published specifications, Keithley will, at its optioneigievittee programming services
necessary to correct such nonconformity or develop a program change to bypass such nonconformity in the Keithley Sditwacendtify Keithley of a
nonconformity during the warranty shall relieve Keithley of its obligations and liabilities under this warranty.

Other Software

OEM software that is not produced by Keithley (Other Software) shall not be covered by this warranty, and Keithley shadiitgw® nbligation to enforce
any OEM's warranties on behalf of the customer.

Other Items
Keithley warrants the following items for 90 days from the date of shipment: probes, cables, rechargeable batteriegrtisteti@snientation.

Items not Covered under Warranty

This warranty does not apply to fuses, non-rechargeable batteries, damage from battery leakage, or problems arising fn@arrayrfaélire to follow
instructions.

Limitation of Warranty

This warranty does not apply to defects resulting from product modification made by Purchaser without Keithley's expresmseittenr by misuse of any
product or part.

Disclaimer of Warranties

EXCEPT FOR THE EXPRESS WARRANTIES ABOVE KEITHLEY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
WITHOUT LIMITATION, ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEITHLEY DIS-
CLAIMS ALL WARRANTIES WITH RESPECT TO THE OTHER HARDWARE AND OTHER SOFTWARE.

Limitation of Liability

KEITHLEY INSTRUMENTS SHALL IN NO EVENT, REGARDLESS OF CAUSE, ASSUME RESPONSIBILITY FOR OR BE LIABLE FOR: (1) ECO-
NOMICAL, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, PUNITIVE OR EXEMPLARY DAMAGES, WHETHER CLAIMED UNDER
CONTRACT, TORT OR ANY OTHER LEGAL THEORY, (2) LOSS OF OR DAMAGE TO THE CUSTOMER'S DATA OR PROGRAMMING, OR (3) PEN-
ALTIES OR PENALTY CLAUSES OF ANY DESCRIPTION OR INDEMNIFICATION OF THE CUSTOMER OR OTHERS FOR COSTS, DAMAGES, OR
EXPENSES RELATED TO THE GOODS OR SERVICES PROVIDED UNDER THIS WARRANTY.

KEITHLEY

Keithley Instruments, Inc. « 28775 Aurora Road ¢ Cleveland, OH 44139 « 440-248-0400 « Fax: 440-248-6168 « http://www.keithley.com

CHINA: Keithley Instruments China ¢ Yuan Chen Xin Building, Room 705 ¢ 12 Yumin Road, Dewai, Madian ¢ Beijing 100029 « 8610-62022886 * Fax: 8610-62022892
FRANCE: Keithley Instruments SARL ¢ BP 60 « 3 Allée des Garays ¢ 91122 Palaiseau Cédex ¢ 33-1-60-11-51-55 ¢ Fax: 33-1-60-11-77-26

GERMANY: Keithley Instruments GmbH ¢ Landsberger Strasse 65 « D-82110 Germering, Munich ¢ 49-89-8493070 « Fax: 49-89-84930759

GREAT BRITAIN: Keithley Instruments, Ltd. « The Minster « 58 Portman Road ¢ Reading, Berkshire RG30 1EA ¢ 44-1189-596469 * Fax: 44-1189-575666

ITALY: Keithley Instruments SRL « Viale S. Gimignano 38 « 20146 Milano « 39-2-48303008 « Fax: 39-2-48302274

NETHERLANDS: Keithley Instruments BV ¢ Avelingen West 49 « 4202 MS Gorinchem ¢ 31-(0)183-635333 « Fax: 31-(0)183-630821
SWITZERLAND: Keithley Instruments SA « Kriesbachstrasse 4 « 8600 Dubendorf ¢ 41-1-8219444 « Fax: 41-1-8203081
TAIWAN: Keithley Instruments Taiwan ¢ 1FL., 85 Po Ai Street « Hsinchu, Taiwan ¢ 886-3-572-9077 « Fax: 886-3-572-9031

Model 5312B
Software Developer’s Guide v1.0

©1996, Keithley Instruments, Inc.
All rights reserved.
Cleveland, Ohio, U.S.A.
Second Printing, July 1998
Document Number: 80370 Rev. B

Manual Print History

The print history shown below lists the printing dates of all Revisions and Addenda created for this manual. The Revision
Level letter increases alphabetically as the manual undergoes subsequent updates. Addenda, which are released between Revi-
sions, contain important change information that the user should incorporate immediately into the manual. Addenda are num-
bered sequentially. When a new Revision is created, all Addenda associated with the previous Revision of the manual are
incorporated into the new Revision of the manual. Each new Revision includes a revised copy of this print history page.

Revision A (Document NUMDEr 80370)coiuriiiiieieiiiee et e et ee e et e e e e e e sanes August 1996
Revision B (Document NUMDBEr 80370)c..eeiuiiiuiiiiieiieeiiesiee sttt see e July. 1998

All Keithley product names are trademarks or registered trademarks of Keithley Instruments, Inc.
Other brand and product names are trademarks or registered trademarks of their respective holders.

About this manual

Quiality control

Keithley Instruments manufactures quality and versatile products, and we want our documenta-
tion to reflect that same quality. We take great pains to publish manuals that are informative anc
well organized. We also strive to make our documentation easy to understand for the novice as
well as the expert.

If you have comments or suggestions about how to make this (or other) manuals easier to unde
stand, or if you find an error or an omission, please fill out and mail the reader response card at
the end of this manual (postage is prepaid).

Conventions

Procedural

Keithley Instruments uses various conventions throughout this manual. You should become
familiar with these conventions as they are used to draw attention to items of importance and
items that will generally assist you in understanding a particular area.

WARNING A warning is used to indicate that an action must be done with great
care. Otherwise, personal injury may result.

CAUTION A caution is used to indicate that an action may cause minor equip-
ment damage or the loss of data if not performed carefully.

NOTE A note is used to indicate important information needed to perform an
action or information that is nice-to-know.

When referring to pin numbering, pin 1 is always associated with a square solder pad on the
actual component footprint.

Notational
A forward slash (/) preceding a signal name denotes an active LOW signal. This is a standard
Intel convention.

Caret brackets (<>) denote keystrokes. For instance <Enter> represents carriage-return-with-
line-feed keystroke, and <Esc> represents an escape keystroke.

Driver routine declarations are shown for C and BASIC (where applicable).

Hungarian notation is used for software parameters. In other words, the parameter type is
denoted by a one or two letter lower case prefix:

character, signed or unsigned
short integer, signed

short integer, unsigned

long integer, signed

dw |long integer, unsigned

—| S| wn|lo

For example, wBoardAddr would be an unsigned short integer parameter.

An additional p prefix before the type prefix indicates that the parameter is being passed by ref-
erence instead of by value. (A pointer to the variable is being passed instead of the variable
itself).

For example, pwErr would be an unsigned short integer parameter passed by reference.

This notation is also used in BASIC although no distinction between signed and unsigned vari-
ables exists.

In BASIC, all parameters also have a type suffix:

$ character, signed or unsigned
% | integer, signed or unsigned
& |long integer, signed or unsigned

Routine names are printed in bold font when they appear outside of function declarations, e.g.,
ReadStatus.

Parameter names are printed in italics when they appear outside of function declarations, e.g.
sControls.

Constants are defined with all caps, e.g., ALL_AXES. Underscores { } must be replaced by
periods {.} for use with BASIC.

Combinational logic and hexadecimal notation is in C convention in many cases. For example,
the hexadecimal number 7Ch is shown as 0x7C.

C relational operators for OR and AND functions — “| |” and “&&” — are used to minimize the
confusion associated with grammar.

Table of Contents

Programming Overview

INSEAlliNg the 5312 SOFIWEAIE ...ttt —— 1111 v 1P
(0e] 4 a1 o1 T aTe Ir= 1 o 11101 541 o SRR v 1P
Microsoft C or Microsoft QUICKC ...t e e e e e e e e ... 1-2
Borland Or TUMDO C/CH+ ..ottt ettt et e et e e e tee e e snteeenneeeesnreee e e 143
Microsoft QUICKBASIC ...t et e eeeaaaeaeees ... 1-3
BOrland TUIDO PASCAIcoouuiiiiiiiiiiiii et e e e e e e ... 1-4
Programming fUNAAMENTAIScooiiiiiiiiiiiie e et s—— e 1-4
Example Programs
oo = 1.4 1T o T RS SRSPRRS I 242
Program iN BASIC ...ttt e e e e e e e e e e e nne e e e e nnes oo 2-14
Program iN PASCAIooiiiiiiiiiiiie et e e e e e s e e e e e e e e e s e e et neeennennnnne e e e e e e e eeees 25
Interrupt Handling
T oo 18Tt 1 o] o IR SO PP TUPPRRUUPRTIY AP 312
EN@DIING INTEITUPLS ..eeiiiieiiiie ittt e b e e s smm e e e e e eme e s neees e 3-2
INEEITUPLS IN C OF PASCAIeeiiiiiiiiiiie ettt e s e eeesmne e e eee sbbeeeeeees e 3P
INTEITUPLS IN BASIC ..ottt h bt e e e sttt e e e st b e e e e+ s 1112t e 210 ... 3-P
General NOtES 0N USING INTEITUPLS ..oueviieiiiiiiiie ettt e e e e emne e e e e nnees e 3-8
Alphabetical Routine Summary
T oo 18Tt 1 o] o IR SO PP TUPPRRUUPRTIY AP 442
ROULINES ..ttt e skttt e e st e e e e s e et bt e e e e st b s emmmmmm e e et e e e snbbeeee e bees 412

A

Driver Routine Descriptions

NOTAtIONA] CONVENTIONS .uviiiiiiiiiiie ettt e e e e e e e e e e aab e e e e s ee st e esesessban s s om—— 11 s
te5312DisablelRQ

Disable INTEITUPL FEOUESTviiiieiii e e e e e e e s e s s e e e e e e e s e e eeaeanesnnnnnns

t€5312ENADIEIRQiiiiiiiiiiiie e e e —r e e e e e e s s e an—————————nrerreaaeees
Enable interrupt request

te5312INAEXAIEITO ...
Disable iNAdeX INTEITUPLoeevieie e e e e e e

LN A gl o) Y =T £ (@] o PRSP
S g F o] LT T o Lo T (=T (U]) U

LESTSIC 3 2 [a1 1= 1o T o R
Initialize board

te5312InitEncoder
Initialize encoder

LESTS I 2 [11653 A
INIEIALIZE SOTIWAIE ... e e e ettt e e e e e s ea e e e e e e e abas s smmmmmmmmm—n s e e eraes

te5312InterruptHooks

INStall INTEITUPE NOOKS .oeeeiiiie e e e e e e s e s et emmnneeeeeeeeees

LESTS3C 3 24 I T Vo [1 | (T
Load counter
LESTS3C 3 2d I T Vo | =

[Tz To I 01 L =YY= =0 1S3 T

LES TSI J D2 2T Lo [o | PR
[T Lo I oo 10] | (=] GRS RRPUPRRRPRUPRPIN
LTSI)] 21T Lo [] PP
L d=T= Lo [0 TU o101 B = (] o SRS .
TEDBL2REAUSEScoiiiiiiiiiiieieietr et e et et et e e e e e e e e e e et et e ettt ettt et e e st b e bbb b seae e s s mmmmmmmmmmn————-ttteteraran
[T [0 S = 11 LSRR

te5312WrapAroUNdAIEITOf e —
Disable borrow/carry interrupt

te5312WrapAroUNAAIEITON e e e e e e s e e e e e e e e e s e s s ate s eeeee e s smmmmmmmmmmnnnsnne .

Enable borrow/carry interrupt

LESTS I A AT L1 (=T 1 4T
WIIEE COMMIANG ..eeniiiiiiiiiee ettt e et e e et et e e e s e et b e e e e s ee et eesssesabanseeesessasss s smmmmmmmmmmnn s eees .

Demonstration Program

Visual BASIC Demonstration Program

OVEIVIEBW .. ieiti e ee et e ettt e e e ettt e e e ettt e e e e e e e e baa e eeee s s s bt e e s e e s taaanaessestansssmmmmnmmnmnnnesessssanseeesents ... C{2

SOftWArE INSTAIIALIONoeviiiiiieee et s e e e ettt e e e e e et s e e eeesaaaeeeeeratnnaaesensd ... C2
WINAOWS 3.1 ittt ettt e e e e et e e e e e e ettt eeeee s e ettt eeeeeesatanaeeseesabansaeesensannnsaaesenns .. C-P
WINAOWS 95 ..ottt ettt e e et e e e e e e ettt eeeee s e ettt eeeeeesataneeeseesatannsaeeseasnnnnseansenns .. C-P

USEI'S QUITE ..eeteeeieeiee e ettt ettt oottt ettt e e e e e e o e ettt bb ettt e e e e e e e e e e s nbe b b s et e et emmmmmmmmmmnne s ssbsbbeeeeeeaaan ... Ct3
DEMO MOUAEScovviiiiiiie ittt et e e ettt e e e e et e e e e e e ee b e e eeeeeastaa e eeeessbannaeesensnnaasaaeseens ... C-4

DEVEIOPEI'S QUIAE ...ttt et e e e e e e s e aaa bttt et e e e e e s emmmmmmmmement e e a2 e e e e e e e ann ... C5
FOrM MOAUIES .. .covieieeeeee ettt ettt e ettt e e e e e e et e e e e e e ee st e eesee st mmmmmmmm—————— s eees ... C-6
(0700 (ST 4 1 T0 Lo [1] 1=TS U .. C-f

LSI Chip Applications Note

[T i g0l [¥]ex i o] o HNU PO ORUPPPRPPTRRUS! SUPIR D2
Problem defiNItiON ...t e et e e e e e et e e e e e et mmmmmmm———— ... D-2
(adr0] o] (= g JE=Yo] [V] (o] o HE PRSPPI ... D-2

A

Figure A-1

B

Figure B-1
Figure B-2

C

Figure C-1
Figure C-2
Figure C-3
Figure C-4
Figure C-5

D

Figure D-1

List of lllustrations

Driver Routine Descriptions

(R LET= 16] =1 10 [T UTTRPTR

Demonstration Program

INPUL PAFrAMETEIS SCIEEIN ...uuiiieiiiiit ettt ettt e e ettt e e e e et e e e e e eeebaa s seaeeseenmmneeeseeeeeennnndfieess B-2
HEIP SCIEEN .ttt e ettt e e e s st e e eeeeeemeeeeee e s snbneeeessnneeeshonins B8
Visual BASIC Demonstration Program

= T T ET=T g o 0 =T o1 P PP PP OUUPRPP ... C{3
Main user menu with demo modes pulled dOWNooiiiiiiiiiiee e e L..C-4
Quadrature mode dialogUeE DOXcoceeiiiiiiiiiei et e e e e e e e eeeenneees ... C-5
Primary fOrm MOGUIEeeieiiiieee et e e e e e emmmmm s e e e e e s ... C6
Template for form modules enabling demo-mode dialogue bOXesccccvvveveiieeeiiiiiiciiiiieeemn oty 4 .
LSI Chip Application Note

LSI chipset counter ProblEem ... e .. D-P

List of Tables

4 Alphabetical Routine Summary

Table 4-1 \[o] e i[o] gt 1R oT0] 01 V/=] a1 1[0] o F- TR SUTN 4-2

1

Programming Overview

1-2 Programming Overview Model 5312B Software Developer’s Guide

Installing the 5312 software

The 5312 driver includes the batch file, INSTALL.BAT, to install the software. The batch file
takes one argument, which is the path where you will install the software. For example, to install
the software on the C drive into a subdirectory called 5312, enter on the command line:

install c:\b312

Use the same path for the installation of all drivers. This puts all include files, examples, etc.,
together. This is especially important when using QuickBASIC, where you will have to combine
many libraries into a quick library.

A BASIC subdirectory, a C subdirectory, and a Pascal subdirectory will be created off of the
directory you specify, and you may delete any unneeded subdirectories to save disk space.

Compiling and linking

The following paragraphs describe how to compile a program using the 5312 driver with the var-
ious supported compilers. It is assumed the source file is named DEMO.C for C, DEMO.BAS
for BASIC, and DEMO.PAS for Pascal.

Microsoft C or Microsoft QuickC

To compile and link on the command line, enter the following:

cl /Ax /Gs demo.c te5312x.lib ©

gcl /Ax /Gs demo.c te5312x.lib (QuickC)
where X is:

S small model,

m medium model,

c compact model,

I large model

Turn stack checking off with the /Gs switch (option) if you use interrupts. For CodeView com-
patibility, include the /Zi switch.

To use the 5312 driver in the QuickC environment, perform the following steps:

1. Inthe Make menu, select the Set Program List option.
2. After naming the Make file, select Edit Program List, and enter the names of the source file
(DEMO.C) and the appropriate library (e.g. te5312s.lib for small model).

3. Inthe Options/Make menu, select the Compiler Flags option and set the appropriate memory
model (this model must match the library in the make list). If you use interrupts, turn stack-
checking off.

Model 5312B Software Developer’s Guide Programming Overview 1-3

Borland or Turbo C/C++

To compile and link on the command line, enter the following:

tcc-m x demo.cte5312 x.lib (Turbo C)

bcc -m x demo.cte5312 x.lib (Borland C)
where X is:

S small model

m medium model

c compact model

I large model

For Turbo Debugger compatibility, include the -v option.
To use the 5312 driver in the Borland environment, perform the following steps:

1. In the Project/Open Project menu, type in the name of the project file you want to create.

2. Inthe Project/Add Item menu, enter the names of the source file (DEMO.C) and the appro-
priate library (e.g. te5312s.lib for small model).

3. In the Options/Compiler/Code Generation menu, set the appropriate memory model (this
model must match the library in the Make list). If you use interrupts, turn stack-checking off.

Microsoft QuickBASIC

If you use compiled BASIC exclusively and never program in the QuickBASIC environment,
you can link the library te5312b.lib into your application.

bc demo.bas;
link demo.obj,,,te5312b.lib

To compile and link for CodeView compatibility, enter the following:

bc /Zi demo.bas;
link /CO demo.obj,,,te5312b.lib

If you use the QuickBASIC environment, you first have to run the batch file QLB5312.BAT.
This batch file will need modification, depending on which QuickBASIC version you use. The
necessary modifications are explained by the remarks in the batch file itself.

The batch file creates two files: te5312gb.qglb and te5312qb.lib. Library te5312gb.qlb is a quick
library for use in the QuickBASIC environment and te5312qb.lib is the command line equiva-
lent. Therefore, you will develop your program with te5312qgb.qglb and then in the final compila-
tion, link with te5312qb.lib.

To use the 5312 driver in the QuickBASIC environment, enter the following:
gb demo.bas /Ite5312qgb.qlb
To compile on the command line:

bc demo.bas;
link demo.obj,,,te5312qb.lib

To compile and link for CodeView compatibility:

bc /Zi demo.bas;
link /CO demo.obj,,,te5312qb.lib

1-4 Programming Overview Model 5312B Software Developer’s Guide

The libraries te5312b.lib and te5312qb.lib are similar but not identical. Library te5312b.lib calls
two routines not contained in the library itself: te5312IndexAlert and te5312WrapAroundAlert.
These two routines must be included in your source code if you need to link te5312b.lib into
application program. The file INTR5312.BAS contains stub versions of these routines that you
can use as a guide, or you can compile and link the file itself into the application. Since
te5312b.lib has unresolved references, it cannot be converted into a quick library.

The library te5312gb.lib is created by the batch file by compiling INTR5312.BAS and linking
the resulting object file with te5312b.lib. It has no unresolved references and can be converted
into the quick library te5312qb.qlb. A program developed in the QuickBASIC environment
using te5312qgb.qglb can be compiled on the command line and linked with te5312qgb.lib without
modifying the source code. See the information on using interrupts with BASIC.

Borland Turbo Pascal

To compile and link on the command line, enter the following:
tpc /$S- demo

If you use interrupts, be sure to turn stack-checking off. Turn off stack-checking by including
/$S on the command line as shown or by including the line {$S-} in the program source code.

To compile for Turbo Debugger compatibility, include the /v option.
To use the 5312 driver in the Turbo Pascal environment, enter the following:
turbo demo

The source file must include the line: uses te5312p;. If you use interrupts, be sure to turn stack
checking off. Turn off stack-checking through the Options/Compiler menu or by including the
line {$S-} in the program.

Programming fundamentals

To quickly write simple applications for the 5312, follow the structure of the example programs
provided in section 2. For C, include the file te5312.h. For BASIC, include the TE5312.BAS file.
For Pascal, always specify the te5312p unit.

Call te5312InitSw first to initialize the software. Then call te5312InitBoard once for every 5312
board in the system. To use the other driver routines, you must be familiar with the concept of
board, axisandglobal numbers.

Each board in the system will be sequentially assigned a number from 0 to 5, called the board
number, used to identify the board in calls to other routines. Each time te5312InitBoard is
called, another board number is assigned. If only one board is installed in the system, calling
te5312InitBoard once assigns a board number of zero.

Likewise, each axis in the system will be sequentially assigned an axis number from 0 to 23,
used to identify a particular axis in calls to other routines. Each time te5312InitBoard is called,
three more axis humbers are assigned.

Each board is also assigned a global number from —1 down to a possible —6. Global numbers can
be used in place of axis numbers in routines that write to an encoder. In these cases all the encod-
ers on the corresponding board will be written at the same time.

2

Example Programs

2-2 Example Programs

Model 5312B Software Developer’s Guide

Programin C

#include "te5312.h"
#include <stdio.h>
#include <conio.h>

#define BOARD 0
#define AXIS_A O
#define AXIS_B 1
#define GLOBAL -1

/ interrupt hook prototypes
static void te5312IndexAlert(short *psAxisNum);
static void te5312WrapAroundAlert(short *psAxisNum);

/[interrupt counters
static unsigned short wCarryA, wCarryB;
static unsigned short windexA, windexB;

void main()
{
unsigned short wBoardAddr;
long ICntA, ICntB,;
short sStatA, sStatB;
short SIRQNum;

/I get the address

printf("\nEnter the base address the 5312 is strapped "
"at in hexadecimal - ");

scanf("%x", &wBoardAddr);

/I get the IRQ number

do{

printf("\nEnter the interrupt request line used (2to 7) - *);
scanf("%u", &sSIRQNum);

twhile((sIRQNum < 2) || (SIRQNum > 7));

/l'initialize the software
te5312InitSw();

/linitialize the board (assume the board has at least two axes)
te5312InitBoard(wBoardAddr, 2);

/I zero the counters
te5312LoadCntr(GLOBAL, OL);

/ initialize interrupts
te5312InterruptHooks(te5312WrapAroundAlert, te5312IndexAlert);
te5312EnableIRQ(BOARD, sIRQNum);
te5312IndexAlertOn(GLOBAL);
te5312WrapAroundAlertOn(GLOBAL);

/I print column headers
printf("\nPress any key to exit\n\n"
" Axis A "

Model 5312B Software Developer’s Guide

Example Programs

2-3

" Axis B\n"
Index WrapAround "
Index WrapAround\n”
Count Status Interrupts Interrupts
Count Status Interrupts Interrupts\n®);

/I display counter values and status until key pressed
while('kbhit()){

ICntA =te5312ReadCntr(AXIS_A); ICntB =te5312ReadCntr(AXIS_B);

sStatA =te5312ReadSts(AXIS_A); sStatB

= te5312ReadSts(AXIS_B);

printf("\r%8Ild %2X %5u %5u ", ICntA, sStatA,

windexA, wCarryA);
printf("%8ld %2X %5u %5u", ICntB, sStatB,
windexB, wCarryB);
}
if ('getch())
(void)getch();
printf("\n");
/Il disable interrupts before exiting program
te5312DisablelRQ();

}

void te5312WrapAroundAlert(short *psAxisNum)
{

switch(*psAxisNum){

case AXIS_A: wCarryA++; break;

case AXIS_B: wCarryB++; break;

}
}

void te5312IndexAlert(short *psAxisNum)
{

switch(*psAxisNum){

case AXIS_A: windexA++; break;

case AXIS_B: windexB++; break;

}
}

2-4 Example Programs Model 5312B Software Developer’s Guide

Program in BASIC

'$INCLUDE: 'TE5312.BAS'

CONST BOARD =0

CONST GLOBAL =-1

CONST AXIS.A=0

CONST AXIS.B=1

CONST BOARD.ADDR = &H020A
CONST NUM.AXES =2

CONST IRQ.NUM =2

'Declare Global Variables
COMMON SHARED CarryA%, CarryB%
COMMON SHARED IndexA%, IndexB%

REM initialize the software

version% = te5312InitSw

cls

print "WVERSION NUMBER ="; HEX$(version%)

REM initialize the board
x% = te5312InitBoard(BOARD.ADDR, NUM.AXES)

REM zero the counters
x% = te5312LoadCntr(-1, 0)

REM initialize interrupts

x% = te5312EnableIRQ(BOARD, IRQ.NUM)
x% = te5312IndexAlertOn(-1)

x% = te5312WrapAroundAlertOn(-1)

print

print "Press any key to exit"

print

REM display counter values and status until key pressed
do

locate 5, 1

CntA& = te5312ReadCntr(AXIS.A)

CntB& = te5312ReadCntr(AXIS.B)

StatA% = te5312ReadSts(AXIS.A)

StatB% = te5312ReadSts(AXIS.B)

print "Axis A"

print" Count ="; CntA&; " "

print" Status = "; HEX$(StatA%); " "

print" Index Interrupts = "; IndexA%

print" Wrap-Around Interrupts = "; CarryA%
print

print "Axis B"

print" Count ="; CntB&; " "
print " Status = "; HEX$(StatB%); " "

print" Index Interrupts = "; IndexB%
print" Wrap-Around Interrupts = "; CarryB%
A$ = INKEY$

loop while LEN(A$) =0

Model 5312B Software Developer’s Guide Example Programs 2-5

REM disable interrupts before exiting program
X% = te5312DisablelRQ

REM If using this file in QuickBASIC, move the rest of this file

REM to the file INTR5312.BAS and remove the remark notations from
REM the beginning of the following two declaration lines. Then
REM run the batch file QLB5312.BAT:

REM '$INCLUDE: 'TE5312.BAS'

REM DIM SHARED IndexA%, IndexB%, CarryA%, CarryB%

SUB te5312IndexAlert (AxisNum9%)
if (AxisNum% = AXIS.A) then
IndexA% = IndexA% + 1
elseif (AxisNum% = AXIS.B) then
IndexB% = IndexB% + 1
endif
END SUB

SUB te5312WrapAroundAlert (AxisNum%o)
if (AxisNum% = AXIS.A) then
CarryA% = CarryA% + 1
elseif (AxisNum% = AXIS.B) then
CarryB% = CarryB% + 1
endif
END SUB

Program in Pascal

Program examplel;
uses te5312p, crt;

const
{ Define some initial constants }
ADDR = $20A; { board address }
NUM_AXES = 2; { number of axes on board }
IRQ=3; {IRQ number}
BOARD =0; {board number }
GLOBAL = -1; {global number}
AXIS_A =0; ({first axis number to be moved }
AXIS_B =1; {second axis number to be moved }
CR =#13; {carriage return}

var
{ interrupt counters }
wCarryA, wCarryB, windexA, windexB : word,;
wBoardAddr : word;
ICntA, ICntB : longint;
sStatA, sStatB : integer;
sTemp : integer;

{$S-X turn stack checking off for interrupts }

2-6 Example Programs Model 5312B Software Developer’s Guide

procedure te5312WrapAroundAlert (var psAxisNum : integer); far;
begin

if (psAxisNum = AXIS_A) then wCarryA = wCarryA + 1;

if (psAxisNum = AXIS_B) then wCarryB := wCarryB + 1;
end,

procedure te5312IndexAlert (var psAxisNum : integer); far;
begin
if (psAxisNum = AXIS_A) then windexA := windexA + 1;
if (psAxisNum = AXIS_B) then windexB := windexB + 1;
end,

begin
{ initialize the software }
sTemp :=te5312InitSw;

{ initialize the board }
sTemp :=te5312InitBoard(ADDR, NUM_AXES);

{ zero the counters }
sTemp :=te5312LoadCntr(GLOBAL, 0);

{ initialize interrupts }

windexA := 0; windexB := 0;

wCarryA = 0; wCarryB :=0;
InterruptHooks(te5312WrapAroundAlert, te5312IndexAlert);
sTemp :=te5312EnableIRQ(BOARD, IRQ);

sTemp :=te5312IndexAlertOn(GLOBAL);

sTemp :=te5312WrapAroundAlertOn(GLOBAL);

{ print column headers }
Writeln('Press any key to exit");

Writeln;

Write(’ Axis A Y
Writeln(' Axis B");

Write(’ Index WrapAround);
Writeln(' Index WrapAround');

Write(" Count Status Interrupts Interrupts);
Writeln(" Count Status Interrupts Interrupts’);
{ display counter values and status until key pressed }
while(not KeyPressed) do
begin
ICntA := te5312ReadCntr(AXIS_A);
ICntB := te5312ReadCntr(AXIS_B);
sStatA ;= te5312ReadSts(AXIS_A);
sStatB := te5312ReadSts(AXIS_B);
Write(CR);
Write(ICntA : 8, sStatA : 5, windexA : 10, wCarryA : 11);
Write(ICntB : 13, sStatB : 5, windexB : 10, wCarryB : 11);
end;
Writeln;
{ disable interrupts before exiting program }
sTemp :=te5312DisablelRQ;
end.

3

Interrupt Handling

3-2 Interrupt Handling Model 5312B Software Developer’s Guide

Introduction

The 5312 driver simplifies the use of interrupts. When an interrupt occurs, the driver handles all
interrupt overhead and then calls your routines to act on the interrupts.

NOTE Interrupt Request (IRQ) address variables must be declared GLOBAL.

Enabling interrupts

The first routine you need to call is te5312EnablelRQ before interrupts can be used. At the end
of the program, catie5312DisablelRQ to restore the interrupt vectors and interrupt masks to
their original state. You need to supply two routines to handle the two interrupt sources:
overflow/underflow and index valid. The two routines are described below.

For BASIC, the names given below are fixed. The linker will expect to find two routines with
these names. For C or Pascal the routines can be named anything because the address rather than
the name of each routine is passed to the te5312InterruptHooks routine.

te5312WrapAroundAlert — This routine will be called when the encoder generates either a
borrow or a carry. It will receive one argument by reference, the axis number of the encoder
causing the interrupt.

te5312IndexAlert — This routine will be called when the index input goes active. It will receive
one argument by reference, the axis number corresponding to the index input causing the
interrupt.

Interrupts in C or Pascal

The example programs in Section 2 show how interrupts are set up. Interrupt hook routines are
installed by calling te5312InterruptHooks. A warning will be generated if you attempt to install
improper routines (routines that do not accept the proper number and type of arguments). Turn
off stack-checking for the interrupt hook functions and any routines they call.

Interrupts in BASIC

The example program given in Section 2 shows how interrupts are used. You must provide two
routines: te5312WrapAroundAlert and te5312IndexAlert

You can use interrupts in the QuickBASIC environment, but the interrupt handling routines must
be in the Quick Library te5312gb.qglb. To do this, use the INTR5312.BAS file to write your inter-
rupt hook routines. Run the batch file QLB5312.BAT to compile INTR5312.BAS and add it to
the libraries, te5312gb.qglb and te5312qb.lib. The library te5312qb.lib is an alternative to using
te5312b.lib and is supplied to provide a command line equivalent library to the Quick Library.
You can develop a program in the environment with the Quick Library and then compile and link
on the command line without modification. If you use te5312b.lib, you will have to add your
interrupt hook routines to the source file before compiling.

Model 5312B Software Developer’s Guide Interrupt Handling 3-3

General notes on using interrupts

There are some important points to be aware of when using interrupts:

1. DOS is not re-entrant. If an interrupt is generated while in a DOS call, the interrupt routine
can not call another DOS function. With Basic, C, and Pascal, DOS is usually used for screen
output, keyboard input, and disk and file I/O. Do not use DOS in your interrupt routines. One
method for avoiding this is to set a global flag in your interrupt routine, and then have the
main routine check this flag and call DOS when the flag is set. For example, if you wanted to
print a message when an interrupt occurred, the interrupt routine sets a flag. When the main
program sees the flag set, it will print the message.

2. Turn off stack-checking when using interrupts with C. If you encounter a stack overflow,
stack-checking is not turned off. Check the compiler manual for instructions on how to do
this.

A

Alphabetical Routine
Summary

4-2 Alphabetical Routine Summary

Model 5312B Software Developer’s Guide

Introduction

Routines

The 5312 driver software consists of the following routines. A more complete description of

each is given in Appendix A.

Table 4-1
Notational conventions

Prefix | Variable type
c character, signed or unsigne
S short integer, signed
w short integer, unsigned
I long integer, signed
dw [long integer, unsigned

p pointer

te5312DisablelRQ()
te5312EnablelRQ(wBoardNum,
sIRQLevel)
te5312IndexAlertOff(sAxisNum)
te5312IndexAlertOn(wAxisNum)

te5312InitBoard(wBoardAddr,
WNumAXxes)

te5312InitEncoder(sAxisNum, sMCR,
sICR, sOCCR, sQR)

te5312InitSw()

te5312InterruptHooks(*WrapAroundHook,

*IndexHook)
te5312LoadCntr(sAxisNum, IValue)
te5312LoadPr(sAxisNum, Value)
te5312ReadCntr(sAxisNum)
te5312ReadOL(sAxisNum)
te5312ReadSts(sAxisNum)
te5312WrapAroundAlertOff(sAxisNum)
te5312WrapAroundAlertOn(sAxisNum)

te5312WriteCmd(sAxisNum, sCmd)

Restores old interrupt vectors and disables PC
IRQ lines.

Sets up interrupt vector and enables PC IRQ line
on the bus.

Disables index interrupts.
Enables index interrupts.

Initializes 5312 board.

Initializes encoder.

Initializes software.

Defines hooks to user functions called on
interrupts (not usable in BASIC).

Loads encoder counter.

Loads encoder preset register.
Reads encoder counter.
Reads encoder output latch.
Reads encoder status.
Disables borrow/carry interrupt.
Enables borrow/carry interrupt.

Writes encoder command.

A

Driver Routine Descriptions

A-2 Driver Routine Descriptions Model 5312B Software Developer’s Guide

Appendix A

Driver Routine Descriptions

Notational conventionscccooviiiiiieeiiiii e A-3
te5312DisablelRQovvviiiiieee e A-3
teb312ENnablelRQ ..o A-4
te5312INdeXAlertOff ..., A-4
te5312INdEXAIEIONccoiii e A-5
te5312INIBOAIdceevevvieeiiiiiccce e A-5
te5312INIENCOAEr ... A-6
tEB53L2INIESW ...eiiiieiiieieee e A-8
te5312INterruptHOOKS ...coooeiiiiiee e A-8
t€5312L0AdCNEE ..uvvviiiiiiiciee e A-9
tE€5312L0AAPT ..viiiiiiiiee e A-9
(TSI H D2 =T Lo [o | | PPNt A-10
t€5312REAAOL ..uuviiiciiiiiei e A-10
t€5312REAASES ..ooeeii e A-10
te5312WrapAroundAlertOff ..., A-11
te5312WrapAroundAlertOnccoveieiieiiiee e A-12

te5312WriteCmd

Model 5312B Software Developer’s Guide Driver Routine Descriptions A-3

Notational conventions

The declarations for each routine is shown for C, BASIC, and Pascal.

In C or Pascal, the type of a parameter is denoted by its one letter lower-case prefix:

Prefix | Variable type
c character, signed or unsigned
S short integer, signed
w short integer, unsigned
I long integer, signed
dw long integer, unsigned
p pointer

For instance, sAxisNum indicates that this variable is an unsigned short integer.

In BASIC, the type of a parameter is always explicitly indicated by a type sulffix:

Prefix | Variable type
% short integer, signed or unsigned
& long integer, signed or unsigned
$ character, signed or unsigned

For instance, AxisNum% indicates the this variable is a short integer.
Routine names are printed in bold sans serif font, te5312InitSw.
Parameter names are printed in italics, sAxisNum.

Constants are defined with all caps, TE5312CMD_QR. Underscores must be replaced by peri-
ods for use with BASIC.

te5312DisablelRQ

Disable interrupt request

Declarations: C: short te5312DisablelRQ(void);
BASIC: DECLARE FUNCTION te5312DisablelRQ%()
Pascal: function te5312DisablelRQ : integer;
Description: This routine masks the IRQ lines selected with te5312EnablelRQ calls and

restores the corresponding interrupt vectors to their original values. If
te5312EnablelRQ has been called at least once, call te5312DisablelRQ
before exiting from the program.

Return Code: (0) No error.

See Also: te5312EnablelRQ

A-4 Driver Routine Descriptions

Model 5312B Software Developer’s Guide

te5312EnablelRQ

Enable interrupt request

Declarations:

Description:

Parameters:

Return Code:

See Also:

te5312IndexAlertOff

Disable index interrupt

Declarations:;

Description:

Parameters:

Return Code:

See Also:

C: short te5312EnablelRQ(unsigned short
wBoardNum, short sIRQLevel);

BASIC: DECLAREFUNCTIONte5312EnablelRQ%(BYVAL
BoardNum%, BYVAL IRQLevel%)

Pascal: function te5312EnablelRQ(wBoardNum :

word; sIRQLevel : integer) : integer;

This routine reassigns the selected interrupt vector to point to the driver
interrupt handler for the specified board. It also saves the old vector and
unmasks the interrupt on the PC.

Each board must use a different IRQ number. The old vectors can later be
restored with the te5312DisablelRQ routine.

BoardNum Board number (0 to 5).

IRQLevel IRQ number (2 to 7).
(0) No error.
(-1) Invalid board number or IRQ number or the IRQ number

has previously been assigned to another board.

te5312DisablelRQ

C: short te5312IndexAlertOff(short
sAxisNum);

BASIC: DECLARE FUNCTION
te5312IndexAlertOff%(BYVAL AxisNum%)

Pascal: functionte5312IndexAlertOff(sAxisNum:

integer) : integer;

This routine disables the index input for the specified axis from causing an
interrupt when index goes active. The index input can be either active
HIGH or active LOW depending on jumper settings: W13, W16, W50, and
W51.

AxisNum Axis number (0 to 23) or global number (-1 to —6).
(0) No error.
(1) Invalid axis number.

te5312IndexAlertOn

Model 5312B Software Developer’s Guide Driver Routine Descriptions A-5
te5312IndexAlertOn
Enable index interrupt
Declarations: C: short te5312IndexAlertOn(short
sAxisNum);
BASIC: DECLARE FUNCTION
te5312IndexAlertOn%(BYVAL AxisNum%)
Pascal: function te5312IndexAlertOn(sAxisNum :

Description:

Parameters:

Return Code:

See Also:

te5312InitBoard

Initialize board

Declarations:;

Description:

integer) : integer;
This routine enables the index input for the specified axis to cause an inter-
rupt when the input goes active. The index input can be either active HIGH
or active LOW depending on jumper settings: W13, W16, W50, and W51.

AxisNum Axis number (0 to 23) or global number (-1 to —6).

(0) No error.
(-1) Invalid axis number.

te5312IndexAlertOff

C: short te5312InitBoard(unsigned short
wBoardAddr, unsigned short wWNumAXxes);

BASIC: DECLAREFUNCTIONte5312InitBoard%(BYVAL
BoardAddr%, BYVAL NumAxes%)

Pascal: function te5312InitBoard(wBoardAddr,

wNumAXxes : word) : integer;

This routine initializes a 5312 board jumpered to the given address. Call
the routine te5312InitSw first to initialize the software, then call
te5312InitBoard once for every 5312 board in the system.

Each board in the system will be sequentially assigned a board number
from 0 to 5 used to identify the board in calls to other routines.

Likewise, each encoder in the system will be sequentially assigned an axis
number from 0 to 23. Each board will be assigned from 0 to 4 axis hum-
bers depending on how many encoders are specified on the board.

Each board will also be assigned a global number from —1 to —6. You can
use a global number in place of an axis number in routines that write to an
encoder. In this case, all encoders on a corresponding board will be ser-
viced at the same time.

A-6 Driver Routine Descriptions

Model 5312B Software Developer’s Guide

Parameters:

Return Code:

te5312InitEncoder

Initialize encoder

Declarations:

Description:

Parameters:

te5312InitBoard initializes the board interrupt controller and each encoder.
For each encoder, te5312InitBoard resets the Master Control Register
(MCR) to:

TE5312MCR_ADDR_RST | |
TE5312MCR_FLAG_RST | |
TE5312MCR_CMP_RST | |
TE5312MCR_MASTER_RESET.

The Input Control Register (ICR) is set to the constant
TE5312ICR_ENABLE enabling the phase inputs.

The Output/Counter Control Register (OCCR) is cleared to zero.

The Quadrature Register (QR) is set to the constant TE5312QR_X4 put-
ting the board intoxquadrature mode.

Override this call by calling te5312InitEncoder.

BoardAddr Address of the 5312 board.

NumAxes Number of encoders on the board.

©) No error.

(-1) Too many boards initialized, invalid board address, or
invalid number of axes.

(>0) One or more axes failed initialization. If bit zero is set, the

first axis failed initialization; if bit one is set, the second
axis failed initialization; etc.
An axis is assigned an axis number even if it fails

initialization.

C: shortte5312InitEncoder(shortsAxisNum,
short sSMCR, short sICR, short sOCCR,
short sQR);

BASIC: DECLARE FUNCTION

te5312InitEncoder%(BYVAL AxisNum%,
BYVAL MCR%, BYVAL ICR%, BYVAL OCCR%,
BYVAL QR%)
Pascal: function te5312InitEncoder(sAxisNum,
SMCR, sICR, sOCCR, sQR : integer) :
integer;

This routine writes the specified commands to the four command registers
of an axis.

AxisNum Axis number (0 to 23) or global number (-1 to —6).

MCR Master Control Register command to be written.
ICR Input Control Register command to be written.
OCCR Output/Counter Control Register command to be written.

QR Quadrature Register command to be written.

Model 5312B Software Developer’s Guide

Driver Routine Descriptions A-7

Return Code:

For MCR, OR any of the following constants together:
TE5312MCR_ADDR_RST Resets the address counters.
TE5312MCR_CNT_OL Loads the Output Latch with the counter
value.

Zeroes the counter, resets the borrow
and carry flags, and sets the sign flag.

Loads the counter with the value of the
Preset Register.
TE5312MCR_CMP_RST Resets the compare flag.
TE5312MCR_MASTER_RST Does a master reset.

For ICR, OR any of the following constants together:

TE5312ICR_DIR Phase inputs are pulse and direction. If
not specified, the inputs are pulse up and
pulse down.

Counter is manually incremented.

Counter is manually decremented.

Phase inputs are enabled.

The ABGT/RCTR input (which can be
jumpered to the index input) is set up as
the phase input enable / disable gate. If
not specified, this input is set up as the
counter external reset input.

The LCTR/LLTC input (which can be
jumpered to the index input) is set up as
the external load command input for the
Output Latch. If not specified, this input
is set up as the external load command
input for the counter.

TES5312MCR_FLAG_RST

TES5312MCR_PR_CNT

TES5312ICR_INC
TE5312ICR_DEC
TE5312ICR_ENABLE
TES5312ICR_GATE

TE5312ICR_LATCH

For OCCR, OR any of the following constants together:
TE53120CCR_BCD If specified, the counter will be in BCD
mode. If not specified, the counter will
be in binary mode.

If specified, the counter will not contin-
ually cycle.

TE53120CCR_DIVIDE Counter is set to divide-hynode.
TE53120CCR_CLOCK Sets counter to 24-hour clock mode.
TE53120CCR_ACTIVE_LOW Enables active LOW carry & borrow
pulses on Cy & By outputs.

Enables carry & borrow toggle flip-flops
on Cy & By outputs.
TE53120CCR_ACTIVE_HIGH Enables active HIGH carry & borrow
pulses on Cy & By outputs.

Enables compare pulses on Cy output
and compare toggle flip-flop on By
output.

TE53120CCR_NOCYCLE

TE53120CCR_TOGGLE

TE53120CCR_COMPARE

The last four options are mutually exclusive.

For QR, one of the following constants can be specified:
TE53120QR_X1 & Quadrature mode.
TES5312QR_X2 2 Quadrature mode.
TES5312QR_X4 4 Quadrature mode.

If zero is specified foQR, quadrature is disabled.

0) No error.
-1) Invalid axis number.

A-8 Driver Routine Descriptions

Model 5312B Software Developer’s Guide

te5312InitSw

Initialize software

Declarations:

Description:

Return Code:

See Also:

te5312InterruptHooks

Install interrupt hooks

Declarations:

Description:

Parameters:

C: short te5312InitSw(void);
BASIC: DECLARE FUNCTION te5312InitSw%()
Pascal: function te5312InitSw : integer;

This routine initializes the 5312 software. Call this routine before calling
any other driver routine in your program.

The version number (4 hex digits) of the 5312 driver is returned.

te5312InitBoard

C: typedef void te5312HookType(short
*psParm);void InterruptHooks
(te5312HookType *WrapAroundHook,
te5312HookType *IndexHook);

BASIC: (not available).

Pascal: te5312HookType = procedure(var psParm :
integer); procedure InterruptHooks
(WrapAroundHook, IndexHook :
te5312HookType);

Installs two routines as interrupt hooks to be called when the appropriate
interrupt is generated. See the discussion in Section 3 for more on interrupt
handling.

WrapAroundHook Routine to be called on a carry/borrow interrupt.
IndexHook Routine to be called on an index interrupt.

Model 5312B Software Developer’s Guide Driver Routine Descriptions A-9
te5312LoadCntr
Load counter
Declarations: C: short te5312LoadCntr(short sAxisNum,
long IValue);
BASIC: DECLARE FUNCTION te5312LoadCntr%(BYVAL
AxisNum%, BYVAL Value&)
Pascal: function te5312LoadCntr(sAxisNum :

Description:

Parameters:
Return Code:

See Also:

te5312LoadPr

Load preset register

Declarations:;

Description:
Parameters:

Return Code:

integer; IValue : longint) : integer;
This routine loads the specified value into the counter of the specified axis.
It does this by first loading the value into the preset register and then com-
manding that the value of the preset register be transferred to the counter.

AxisNum Axis number (0 to 23) or global number (-1 to —6).

Value Value to be loaded into the counter.

(0) No error.

(-1) Invalid axis number.

te5312ReadCntr

C: shortte5312LoadPr(short sAxisNum, long
IValue);

BASIC: DECLARE FUNCTION te5312LoadPr%(BYVAL
AxisNum%, BYVAL Value&)

Pascal: function te5312LoadPr(sAxisNum :

integer; IValue : longint) : integer;

This routine loads the specified value into the preset register of the speci-
fied axis.

AxisNum Axis number (0 to 23) or global number (-1 to —6).
Value Value to be loaded into the counter.
(0) No error.

(1) Invalid axis humber.

A-10 Driver Routine Descriptions

Model 5312B Software Developer’s Guide

te5312ReadCntr

Read counter

Declarations:

Description:

Parameters:

Return Code:

te5312ReadOL

Read output latch

Declarations:;

Description:

Parameters:

Return Code:

te5312ReadSts

Read status

Declarations:

C: long te5312ReadCntr(short sAxisNum);

BASIC: DECLARE FUNCTION te5312ReadCntr&(BYVAL
AxisNum%)

Pascal: function te5312ReadCntr(sAxisNum :

integer) : longint;
This routine reads and returns the current value of the counter.
AxisNum Axis number (0 to 23).

Current counter value.

(-1 Invalid axis number.

C: long te5312ReadOL (short sAxisNum);

BASIC: DECLARE FUNCTION te5312ReadOL&(BYVAL
AxisNum%)

Pascal: function te5312ReadOL (sAxisNum :

integer) : longint;
This routine reads and returns the value of the output latch.
AxisNum Axis number (0 to 23).

Output latch value.

(1) Invalid axis number.

C: short te5312ReadSts(short sAxisNum);

BASIC: DECLARE FUNCTION te5312ReadSts%(BYVAL
AxisNum%)

Pascal: function te5312ReadSts(sAxisNum :

integer) : integer;

Model 5312B Software Developer’s Guide

Driver Routine Descriptions A-11

Description:

Parameters:

Return Code:

te5312WrapAroundAlertOff

This routine reads and returns the status register.

Figure A-1
Read status

|B7|BG|B5|B4|B3|BZ|Bl|BO|

I_ BORROW TOGGLE F/F (BWT)
CARRY TOGGLE F/F (CYT)

COMPARE TOGGLE F/F (COMPT)
SIGN REGISTER

UP/DOWN INDICATOR

DON'T CARE

The bits of the status register formatted in Figure A-1 can be masked out
using the following constants:

TES5312STS_BORROW Borrow Flag.

TE5312STS_CARRY Carry Flag.
TE5312STS _COMPARE Compare Flag.
TE5312STS_SIGN Sign Flag.
TE5312STS_UP Direction is up.

AxisNum Axis number (0 to 23).

Status Byte.
(-1) Invalid axis number.

Disable borrow/carry interrupt

Declarations:

Description:

Parameters:

Return Code:

See Also:

C: short te5312WrapAroundAlertOff(short
sAxisNum);

BASIC: DECLARE FUNCTION
te5312WrapAroundAlertOff%(BYVAL
AxisNum%)

Pascal: function te5312WrapAroundAlertOff

(sAxisNum : integer) : integer;

This routine disables the carry or borrow interrupt for the specified axis.

AxisNum Axis number (0 to 23) or global number (-1 to —6).
(0) No error.
(-1) Invalid axis number.

te5312WrapAroundAlertOn

A-12 Driver Routine Descriptions

Model 5312B Software Developer’s Guide

te5312WrapAroundAlertOn

Enable borrow/carry interrupt

Declarations:

Description:

Parameters:

Return Code:

See Also:

1e5312WriteCmd

Write command

Declarations:

Description:

Parameters:

C: short te5312WrapAroundAlertOn(short
sAXisNum);

BASIC: DECLARE FUNCTION
te5312WrapAroundAlertOn%(BYVAL
AxisNum%)

Pascal: function te5312WrapAroundAlertOn

(sAxisNum : integer) : integer;

This routine enables the carry or borrow interrupt for the specified axis.

AxisNum Axis number (0 to 23) or global number (-1 to —6).
(0) No error.
(1) Invalid axis number.

te5312WrapAroundAlertOff

C: short te5312WriteCmd(short sAxisNum,
short sCmd);

BASIC: DECLARE FUNCTION te5312WriteCmd%(BYVAL
AxisNum%, BYVAL Command%)

Pascal: function te5312WriteCmd(sAxisNum, sCmd

: integer) : integer;
This routine writes the specified command to the specified axis.

AxisNum Axis number (0 to 23) or global number (-1 to —6).
Command Command to be written.

Command is constructed by ORing several constants together. It should
always include one of the following four constants which identify the com-
mand register:

TE5312CMD_MCR Master Control Register.
TE5312CMD_ICR Input Control Register.
TE5312CMD_OCCR Output/Counter Control Register.
TE5312CMD_QR Quadrature Register.

If TE5312CMD_MCR is included, any of the following constants can also
be ORed together:

TE5312MCR_ADDR_RST Resets address counters.

TE5312MCR_CNT_OL Loads Output Latch with counter value.

TE5312MCR_FLAG_RST Zeroes counter, resets borrow/carry
flags, sets sign flag.

Model 5312B Software Developer’s Guide

Driver Routine Descriptions A-13

Loads counter with value of Preset
Register.
TE5312MCR_CMP_RST Resets compare flag.
TE5312MCR_MASTER_RST Master reset.

TES5312MCR_PR_CNT

If TES312CMD_ICR is included, any of the following constants can also
be ORed together:

TE5312ICR_DIR Phase inputs are pulse and direction. If
not specified, the inputs are pulse up/
down.

Counter manually incremented.

Counter manually decremented.

Phase inputs enabled.

ABGT/RCTR input (which can be jum-
pered to the index input) set up as phase
input enable / disable gate. If not speci-
fied, input is set up as counter external
reset input.

The LCTR/LLTC input (which can be
jumpered to the index input) set up as
external load command input for Output
Latch. If not specified, input set up as
external load command input for
counter.

If TES312CMD_OCCR is included, any of the following constants can
also be ORed together:

TE53120CCR_BCD

TES312ICR_INC
TES312ICR_DEC
TES312ICR_ENABLE
TES312ICR_GATE

TES312ICR_LATCH

Counter in BCD mode. If not specified,
counter in binary mode.

Counter not continual cycle.
TE53120CCR_DIVIDE Counter set to divide-bymode.
TE53120CCR_CLOCK Counter in 24-hour clock mode.
TE53120CCR_ACTIVE_LOW Enables active LOW carry/borrow
pulses on Cy and By outputs.

Enables carry/borrow toggle flip-flops
on Cy and By outputs.
TE53120CCR_ACTIVE_HIGH Enables active HIGH carry/borrow
pulses on Cy and By outputs.

Enables compare pulses on Cy output
and compare toggle flip-flop on By
output.

TES53120CCR_NOCYCLE

TE53120CCR_TOGGLE

TE53120CCR_COMPARE

The last four options are mutually exclusive.

If TES312CMD_QR is included, one of the following constants can also
be ORed together:

TE5312QR_X1
TE5312QR_X2
TE5312QR_X4

& Quadrature mode
& Quadrature mode
4 Quadrature mode

If none of the last three options is specified, quadrature is disabled.

Return Code:

(0) No error.
(-1 Invalid axis number.

B

Demonstration Program

B-2 Demonstration Program Model 5312B Software Developer’s Guide

The 5312 includes a demonstration program designed to support the actual operation and gen-
eral capabilities of the card. Each axis in the program can operate independently in any of the
5312 operating modes: quadrature, pulse/direction, and up/down counting. To run the program,
insert the software diskette into drive A (or B), and then at the prompt type:

AEXE\TEDEMO <Enter> or
B:\EXE\TEDEMO <Enter>

After a moment, a brief message describing the program will appear on your screen. Pressing
any key will continue the program, and the screen shown in Figure B-1 will be displayed:

Figure B-1
Input parameters screen
AXIS A AXIS B AXIS C AXIS D
Dec Dec Dec Dec
Hex Hex Hex Hex
Direction Direction Direction Direction
Sign Sign Sign Sign
Compare Compare Compare Compare
Carry Carry Carry Carry
Borrow Borrow Borrow Borrow
INPUT PARAMETERS: HELP

Base Address in Hex The base address of card (200 to 3FF).
Number of Axis
Index 1-2 ——————————FUNCTIONS
Index 2-3 F1 - Parameter Input Help Toggle
Mode of Operation ‘B’ - Exit program
PR Value ESC - Aborts parameter input
Counter Preset Value Any other key - INPUT PARAMETERS

The program will ask you to define input parameters. Parameter choices can be seen in the win-
dow labeled HELP which appears to the right of the INPUT PARAMETERS window. For exam-
ple, when choosing the number of axes, the HELP box will read the message “1-4" denoting the
number of axes that are possible to configure during the test.

Model 5312B Software Developer’s Guide Demonstration Program B-3

For an explanation of the parameter to be set, press <F1>. A help screen will appear containing
definition of the parameter. For example, pressing <F1> when the cursor is at the PR Value will
bring up the screen shown in Figure B-2.

Figure B-2

Help screen

T AXIS A—‘ AXIS B—‘ AXIS c—‘ ’7 AXIS D=
Dec Dec Dec ‘ Dec
H HELP SCREEN

The value loaded into the PR (Preset Register) is the value used to toggle
D the Compare Toggle Flip-Flop shown as “Compare” in each axis window
Si and is also loaded into the counter on a valid index pulse if selected.

C Use BACKSPACE to delete before editing or if the ‘s ¢
overflow appears.

C
Press F1 to exit.
;5' End
INPUT PARAMETERS — HELP
Base Address in Hex] | eg init vslue (0-16, 777, 215)
Number of Axis
Index 1-2 ——— FUNCTIONS
Index 2-3 F1 - Parameter Input Help Toggle
Mode of Operation ‘E’ - Exit program
PR Value ESC - Aborts parameter input
Counter Preset Value Any other key - INPUT PARAMETERS

After setting all the parameters and after setting the Counter Preset Value parameter, pressing
<Enter> will cause values to be displayed in the boxes above. The actual number of boxes dis-
playing data depends on the number of axes chosen.

The following is a brief description of each value:

Dec/Hex: Represents the count values. Dec represents the Decimal count;
Hex represents the Hexadecimal count.

Direction: Direction to which the count is heading. The counter will either
be heading up or down.

Sign: Indicates whether the counter has overflowed/underflowed. It

will read plus when overflowed and minus when underflowed.
Compare/Carry/Borrow: These are toggles. Each one will read either HIGH or LOW.

Compare changes state every time the count equals the PR Value. Carry changes state every tir
there is an overflow. Borrow changes state every time there is an underflow. Refer to section 2 o
this manual for further value descriptions in the Input Parameters.

To escape out to a DOS prompt, press <Esc> to exit the parameter list, and press <E> to exit
TEDEMO.

C

Visual BASIC
Demonstration Program

c-2 Visual BASIC Demonstration Program Model 5312B Software Developer’s Guide

Overview

The Model 5312 also includes a 16-bit Windows Visual BASIC program that demonstrates the
operation and general capabilities of the card. Each axis in the program can operate indepen-
dently in any of the Model 5312 operating modes: quadrature, pulse/direction, and up/down
counting.

The following appendix takes users through installation and operation of this demo. It assumes
that they have the proper hardware configuration, including a properly configured 5312 plugged
into the backplane of a Windows-equipped IBM compatible PC. Please see the Model 5312
Technical Reference for hardware installation procedures.

Software installation

The 5312 Visual BASIC demo runs under Windows 3.1 or Windows 95. The common procedure
is to run the file setup.exe from youdt:3floppy drive (a:\ or b:\). How you do this under the two
environments depends on their respective user interfaces. The following is a detailed procedure
for each environment.

Windows 3.1

Insert your 32" 5312 Visual BASIC Demo diskette into your a: or b: floppy drive. In the Pro-
gram Manager, pull down the File menu and select Run. You will get a dialogue box with one
data field. Typa:\setup , orb:\setup and press <enter> or click OK. Windows 3.1 will

run the installation procedure. Follow the steps as prompted by this procedure.

Windows 95

Insert your 32" 5312 Visual BASIC Demo diskette into your a: or b: floppy drive. Click on the
Start button at the lower left-hand part of your screen. Click on Run. Choose Browse and select
Drive A: (or B: where appropriate). Click OK or press <enter> and Windows will run the instal-
lation procedure. Follow the steps as prompted by this procedure.

Model 5312B Software Developer’s Guide Visual BASIC Demonstration Program C-3

User’s guide

Double click on the VB5312 icon. The main user menu should appear as shown in Figure C-1.

Figure C-1
Main user menu

5312 16 Bit Visual Basic Demo !E

File. Demo Modes. Options.
Demo Mode |Quadrature |

— AXIS 0 — — AXIS 1 — — AXIS 2 — — AXIS 3 —

Direction Direction Direction Direction
Sign |:| Sign |:| Sign |:| Sign |:|
Compare E Compare D Compare E Compare E
Cary [0] Cary [0] Cary [o] Cary [0]
Borrow D Borrow D Borrow D Borrow D

NOTE If the board is not set at the correct address, you will get a “Hardware Initializa-
tion Error” during program startup. The default address is 300 hex. If another
board in your backplane is configured at that address, you will have a conflict
between that board and the Model 5312. To solve this conflict, use the following
procedure.

1. Read the 5312 Technical Reference regarding changing board addresses. In
this section, note how the switches on the board enable you to configure the
board for a non-default address.

2. Inthe menu depicted in Figure C-1, pull down Options, choose Bolaimss
and then select the address appropriate to the switch settings.

Cc-4 Visual BASIC Demonstration Program Model 5312B Software Developer’s Guide

Demo modes

The first logical operation is to select the demo mode you wish to operate in. To do this, pull
down Demo Modes as shown in Figure C-2.

Figure C-2
Main user menu with demo modes pulled down

N 5312 16 Bit Visual Basic Demo !E
File. DR [ol Options.
Demo 1. Quadrature | |
Demo 2. Count/Direction
—— Al Demo 3. Up Down M — AXIS 2 —] — AXIS 3 —
Demo 4. Quadrature, reset @ index
bec Demo 5. Quadrature, load @ index Dec I:| Dec I:|
Hex [] Hex [] Hex [] Hex []
Direction |:| Direction |:| Direction |:| Direction |:|
sign [sign [sign [sign [
Compare |:| Compare |:| Compare |:| Compare |:|
cary [_] cary [_] cary [_] cary [_]
Borrow |:| Borrow |:| Borrow |:| Borrow |:|
Reset All

When you select a mode, a model dialogue box will appear. For example, if you select quadra-
ture mode, the dialogue box shown in Figure C-3 will appear.

Model 5312B Software Developer’s Guide Visual BASIC Demonstration Program C-5

Figure C-3
Quadrature mode dialogue box

/

QUADRATURE MODE
RELEVANT JUMPER SETTINGS:
Jumpers W24, W17, W22 and W29 should be removed.

EXPECTED INPUTS:
Pulse from Phase A and Phase B.

WHAT WILL HAPPEN:
CCW rotation will count up. CW rotation will count down.

Range 0 - 16777215
[ok | Don't show dialog. |[[] |

If you need to enter an initial count of other than 0, enter the desired count in the Initial Count
data field. Then click OK or press <enter> to start the demo. The Reset All command button on
the main user menu will reset all counters to zero. This is the default value. Dialogue boxes that
appear when the user selects other modes are very similar to the above.

Developer’s guide

This demo was developed under Visual BASIC 4.0. For those unfamiliar with Visual BASIC,
there are two primary types of modules developers create when they write a program: form, anc
code modules. Form modules specify the form that GUI windows will take. Code modules are
the guts of the program. They do everything from driving the system to enabling certain opera-
tions to take place within the form modules when users specify appropriate values. The architec
ture of any Visual BASIC program consists of a project file with some code and form modules in
it.

The 5312 program architecture consists of a project file (VB5312.VBP) of seven form modules
and three code modules. The form modules enable the user to interact with the available GUI
interfaces. The code modules run the board at a low level. We do not offer the source for these
modules, so this section is for your information only.

C-6 Visual BASIC Demonstration Program Model 5312B Software Developer’s Guide

Form modules

The main form module is FORM12.FRM. It is comprised of menu items, text boxes, and a com-
mand button. See Figure C-4.

Figure C-4
Primary form module

/FILE DEMO MODE OPTIONS

DEMO MODE
Dec Dec Dec Dec
Hex Hex Hex Hex
Direction Direction Direction Direction
Sign Sign Sign Sign
Compare Compare Compare Compare
Carry Carry Carry Carry
Borrow Borrow Borrow Borrow

The secondary form modules (DEMO1DLG.FRM through DEMO5DLG.FRM) are all quite
similar. They comprise the dialogue boxes for the various demo modes. They consist of a large
read-only text box that provides the information about the mode in question, a small changeable
text box, two command buttons and a check box. See Figure C-5 for a template.

Model 5312B Software Developer’s Guide Visual BASIC Demonstration Program C-7

Figure C-5
Template for form modules enabling demo-mode dialogue boxes

TextDigl

Commandl | |Command2

Checkl
Ll

The last form module (ADDR.FRM) enables the user to enter board address values. It is not pic
tured here.

Code modules

The three code modules in the 5312 demo (START.BAS, 5312H.BAS, and DECL.BAS) drive
the program. They are described in more detail below.

START.BAS

This code module is called on program startup. It runs through all the board initialization rou-
tines, including the init software, init board, and init global variables.

5312H.BAS

This module contains board register constants, dynamic linking library (DLL) function declara-
tions, and DLL prototypes.

DECL.BAS

This code module contains program constants, user-defined types and global variables.

D

LSI Chip Applications Note

D-2 LSI Chip Applications Note Model 5312B Software Developer’s Guide

Introduction

The following is an application note for developers of products with Model 5312. Those who
preset their counter values relatively high (thousands of counts, typical) possibly won't notice
this problem in most applications. In fact, with thousands of units in the field, we just recently
discovered the bug.

Problem definition

The LSI 7166 chipset onboard these models exhibits a minor logic anomaly. The problem is
most noticeable on systems using relatively low preloaded count values in the 7166. For exam-
ple, if you preset your counter a +5, the first count loop is decremented as 5, 4, 3, 2, 1, 0 then
carries as the count rolls onfffff. Thus, the count loop consists of 6 states. On the second and

all subsequent count loops, as the counter is decremented through zero, a borrow or carry condi-
tion occurs. The counter is then reset and preloaded with a value equal to the original value
minus 1, i.e. [preload - borrow] or [5 -1 = 4] (see Figure D-1).

Figure D-1
LSI chipset counter problem
5 Preload Value
4
e Preload Reset
° @
D F/IF BORROW
=PR-1
O 1

NOTE: This makes the problem associated with low
counts per index manifest.

Problem solution

The solution to this problem is to preload the counter to ‘1’, load the preset register to ‘5’, do a
manual decrement twice. This will cause the counter to be reloaded with the correct value [pre-
load - borrow]. You can perform this before the main counter control loop. To solve the problem
at the register level, perform the increment/decrement at bits 2 and 1 of the Input Control Regis-
ter during the initialization and configuration stage. (See the manual.) To do this with the soft-
ware drivers, follow the source below (in C). In this example, it is assumed that the axis 0 and
the desired counts per update cycle is 5. Of course, you will need to pass axis and desired counts
per cycle parameters appropriate to your application.

/* LOW COUNTS PER INDEX INITIALIZATION ROUTINE */
te5312DisablelRQ(); //---Mask Interrupt

te5312LoadPr(AxisO, 1); //---Preload Counter to 1
te5312WriteCmd(AxisO, TE5312CR_DEC); //--- Decrement Counter
te5312WriteCmd(AxisO, TE5312CR_DEC); //--- Twice
te5312LoadPr(Axis0, 5); //---Reload Desired Cycle Counter

/* Ready to Go */

Index

A

Alphabetical routine summary 41

Borland or Turbo C/C+ :
Borland Turbo Pasc

Code modulef C-1
Compiling and ImkmE

D
Demo mode

Demonstration program Bil
Developer’s guidg C-p
Disable borrow/carry interrupt A-11

Disable index interrugt A-4
Disable interrupt request A3
Driver routine descriptior)s A-l

Enable borrow/carry interrupt A-1p

B

Enable interrupt reques 4
Enabling interrupt P
Example program

Form modules C-6

G

General notes on using interrupts 3-3

M

N

O

P

Initialize board| A-5
Initialize encodef A-6
Initialize software] A-8

Install interrupt hooks A-§
Installing the 5312 softwav-z
Interrupt handlln

Interrupts in BASIQ 3-1

Load counte
Load preset register A-9
LSI chip applications note D-1

Microsoft C or Microsoft %Jick

Microsoft QuickBASIC| 1-3

Notational convention

Overview C-7

Problem definitio ﬂ
Problem solutio I}I
Program in BASIC
Program in E
Program in Pascal 2-$
Programming fundamentals 1}4
Programming overviejv 141

Read countgr A-10
Read output latc
Read status A-10
Routines

Software installation C-P

te5312InitEncode
te5312|nitSM A-§
te5312InterruptHooks A—B
te5312Loade%r A-9
teb312LoadPy_A-

te5312ReadCrtr A-10

te5312ReadOl A-10
te5312ReadSts A-1Q

te5312WrapAroundAlertOff A-1

=

te5312WrapAroundAlertOn A-1
te5312WriteCmd A-12

NJ

U

V

W

User's guid

Visual BASIC demonstration progr-l

Windows 3.1 C-2
Windows 95| C-2

Write comman(ﬂ A-12

KEITHLEY

Keithley Instruments, Inc.
28775 Aurora Road
Cleveland, Ohio 44139

Printed in the U.S.A.

